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Transition from random to ordered fractals in fragmentation of particles in an open system
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We consider the fragmentation process with mass loss and discuss self-similar properties of the arising
structure both in time and space, focusing on dimensional analysis. This exhibits a spectrum of mass exponents
6, whose exact numerical values are given for whicl or t% has the dimension of particle size distribution
function ¢(x,t), wherez is the kinetic exponent. We obtained conditions for which the scaling and fragmen-
tation process altogether breaks down, and we give an explicit scaling solution for a special case. Finally, we
identify a new class of fractals ranging from random to nonrandom and show that the fractal dimension
increases with increasing order and a transition to a strictly self-similar pattern occurs when randomness
completely ceases.

DOI: 10.1103/PhysRevE.64.016119 PACS nuner05.45.Df, 05.40-a, 46.50+a, 62.20.Mk

The kinetics of the irreversible and sequential breakup of gy (x,t) X
particles occurs in a variety of physical processes and has— ;= —lﬂ(X,t)fo F(y,x—y)dy
important applications in science and technology. These in-

clude erosior1], grinding and crushing of solid], poly- o 9

mer degradation and fiber length reducti@], breakup of +2L dy $(y, DF(x,y =x) + - (M(X) (%, 1)),
liquid droplets[4], etc., to name just a few. In recent years,

there has been increasing interest in studying fragmentation, (1)

resulting in variations that increase the flexibility of the
theory in matching such conditions of real phenomena as awhereF(x,y) is the breakup kernel describing the rules and
extension to higher dimensiohS], agglomerate erosidi], the rate at which a particle of siz&{y) breaks into sizex
mass los$6], volume chang¢7], and fragmentation annihi- andy. Equation(1) describes a process whereby cuts are
lation [8]. The kinetic equation approach of fragmentation ise€quivalent to seeds being sown on the fragmenting objects,
described by a linear integrodifferential equation where mastus producing two new segments. This immediately creates
or size is the only dynamical quantity. This theoretical ap-two more new ends belonging to the two different, newly
proach is mean field in character since fluctuations are igcreated fragments; in doing so, fragments start losing their
nored altogether. masses immediately from e|t_her end until they encounter an-
In this paper, we study the kinetics of fragmentation with Other seed or become dustlike, thereby stopping the loss of
continuous mass loss, an interesting variant of the cla:ssicérl".a'r Masses. Equatm(ﬂ).also describes the sequenﬂgl depo-
fragmentation equation introduced by Edwarelsal. [6]. sition of point-size particles that grow once deposited suc-

This is relevant in all fragmentation processes mentione&eSSfUIIy and stop growing upon collision with another point

. ; : or growing particle. In other words, the present model de-
earlier where mass loss might occur due to evaporation, XLz - ibes nucleation and arowth whe#ix,t) describes the ga
dation, sublimation, dissolution, melting, etc., or in the Yule- 9 ’ gap

Furry process of cosmic shower theory where energy IOSsize dist'ributio'n of size; at timet'or how space is covered
o . . By growing objects. This occurs in a number of natural phe-
occurs due to collisiofi9]. Although there exist a series of nomena, including phase separation, wetting, droplet growth,
paper devoted to this problem, the explicit scaling solution,, growth of breath figures. Recently, a variant of the
with exact numerical exponents, the geometric properties O;f)resent model was considered @] in which the deposition
the arising pattern, and the interplay between fragmentatiogs growing rods instead of growing seeds was addressed.
and mass loss remain unexplored. In addition to obtaining \we consider the breakup kernel to Béx,y) = (xy)#(x
these, we give an alternative interpretation of the existing; y)o=1 for which the breakup rate(x) = [3F(y,x—y)dy
scaling theory by considering dimensional analysis, and we- px*(8.9) \wherep=[I'(8+1)]?/I'(23+2), the homoge-
give an explicit bound to the exponent of the breakup rate foheity index\ (8,0) =28+ o, and Ref)>—1. To comply
which the kinetic equation fails. A strong motivation for the with the present choice of breakup ratx), it is essential to
present investigation came from the desire to know how fracconsider a similar power-law form fom(x), hence we
tal geometry of the resulting object changes with the degreehoosem(x) ~mx?, with m a positive real constant. How-
of order, which is quantified by the global exponent and isever, a(x) being the quantity describing the rate at which
typically known as the fractal dimension. particles are fragmenting “#“=7(x) must bear the di-
The evolution of the particle size distribution function mension of time, and this puts a strong constraint on the
¥(x,t) for fragmentation with mass loss in one dimension isexponenty. That is, the dimensional consistency requires
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v=N(B,0)+1. This dimensional consistency has been ig-ior in this regime, e.g., lack of conservation of mé$g] and
nored in all previous studig$§]; instead,y<\(8,0)+1 was an absence of self-averagin@3]. Due to this anomalous
identified as the recession regime apid A (B8,0)+1 as the behavior, this regime was termed a transition to shattering
fragmentation regime. A closer look at the rate equation ref14]. These heuristic arguments actually imply a possible
veals thaix andt are inextricably intertwined via the dimen- failure to describe a physically meaningful fragmentation
sional consistency, and hence the system becomes stochadif®cess by the breakup kernel, for which the homogeneity
in nature. So, it is obvious that either of the two can be takedndexA(B8,0)<0 and the shattering is actually an articulate

to be an independent parameter when the other one is elerm for this regime. The above _discussion is true for @y
pressible in terms of this. For examplexifis chosen to be even when the mass loss term is absent. Therefore, we shall
the independent parameter, then using the fact that the df—e_frt]”g the>re_stlof the discussion to the reginis,o)>0
mension of a physical quantity is always expressed as W e(g) :

power monomial, we can define the dimensionless quantit)é We now turn to finding the mass exponeﬁ]twhlch can
P . . . nly be found if the system follows some conservation laws.
E=t/x“. It is obvious that the dimension of the governed

. . For example, for pure fragmentatiom&O0), the mass or
quantity #(x,t) can also be expressed in termsxoélone, xamp pu 9 €0)

and hence we can define another dimensionless qudtity size of the system is a conserved quantity and gies.
ini h tM (1) = S o X" (x,t)d d -
— D)X "~ X p(x xE) =F (x.£). Since¢ and] are di- Defining thenth momentM,(t)= [ox"y¥(x,t)dx and com

. s o ining it with the rate equatiofil) for the present choice of
mensionless quantities upon transition from one system

. o . (x,y) andm(x) yields
units of measurement to another inside a given class, their
numerical values must remain unchanged, meamiRfx 2
=0. This implies thatll is independent ok and can be dMn(t) :_([F(B+l)] — 2F(p+ DI (n+p+1)
completely expressed in terms éfalone. Thus we can de- 9t I(2p+2) F(n+2p+2)
fine IT=® (&) to enable us to write the spatial scaling ansatz XMpyopso(t). )
P(x,t)~x" D (&). Had we chosen timeto be the indepen- ntepte

dent quantity, a similar argument would lead us to write the . .
temporal scaling ansatz(x,t)~t"¢(y) with »=x/t 2. Note that the number densityl (t) evolves in the same

We know thatx—*3?) has the dimension of time. therefore fashion as it would in the absence of the mass loss term. This
£~ 1A(B.7) = 3(t) must have the dimension af This ,gives us means that particles keep losing their mass in a continuous

z=1/\(B,o), which is known as the kinetic exponent since manner by some m_echanisms that do not alter th_e n_umber
S(t) des'crib’es the mean or typical cluster size and density. The interesting feature of the above equation is that

—\(B,0). Inserting the temporal scaling ansatz into EL. forr]_rr;]>0, there are infinitely magyl— Df(-’B-’m) l;/alues forf
and requiring scaling to exist would give the same result for ¢ MDf(Bgm)(t) are conserved quantities. c.)weve.r, or
the kinetic exponent. However, dimensional consideration M= 0, there is only one conserved quantity(t), i.e., size
proved to be very instructive and time-saving, yet rich inOF mass of the system, and this does not depeng.ofihe
physics. dynamics of the system is governed by conservation laws

Note that the exponertt takes a value for whick ¢ and ~ @nd, as a consequence, the system shows scale invariance.
t%2 have a dimension ofi(x,t), hence it is called the mass 1hese conserved quantities in fact are the intrinsic agent re-
exponent. The existence of scaling or a self-similar solutiorSPonsible for tuning the numerical value of the mass expo-
actually means that we can choose self-similar coordinatedent#, and they introduce universality to the process. How-

YIt?% (or wix~ %) andx/ 8(t) [or t/7(x)] such that their plots €Ver, at)\_so there is no evidence that there_ exists any
for any initial condition collapse into one single curve. It is conservation law for which the mean cluster size can be a

very instructive to note that at(8,0)=0, the governing decreasing fgnction of time while the mean number den;ity
parameters,t and the governed parametgrall lose their ~ €an behave in the opposite way. We can flnd the numerical
dimensional characters. As a result, the system loses its st¥@lue ofD¢(3,m) by searching for the positive and real root
chastic nature. This means that one can no longer defin@ the equation obtained by setting the term in the bracket of
self-similar coordinates at(,c) =0, which is conceptually ~EQ- (2) equal to zero, which is a polynomial mof a degree
very important and crucial for scaling to exist, hence scalingletérmined by thg8 value. Substituting the temporal scaling
at \(8,0)<0 breaks down. Note the inherent properties ofansatz into the definition of My(t) gives Mn(t)

the fragmentation process, which are the typical or mean-t """ D[5n"¢(n)dy, and  demanding  that
cluster sizes(t), must decrease as time proceeds, and thdp (8.,m) be a conserved quantity immediately gives
number density must be an increasing function of time. In=[14 D;(8,m)], which clearly depends o andm only if
order to be so, the system must be governed by some com>0. Owing to the random nature of the process and due to
servation laws. However, this is not true as the homogeneitthe presence of the mass loss term, it is clear that when the
index\(B,0)<0, in which casej(t) becomes an increasing process continuead infinitum it creates a distribution of
function of time. This simply goes against the principle of points (dush along a line at an extreme late stage that is
kinetics of fragmentation. Combining all this, we argue thatdifferent from any known sdtl5,16. To measure the size of
the system fails to show scaling not only»{B,0)<0, as the set created in the long-time limit, we define a line seg-
was reported by Cheng and Redngrl], but also at ment 8(t)=M (t)/My(t)=t" B which is the typical
N(B,0)=0. Many authors noticed further anomalous behav-cluster size. We can count the number of such segments
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needed to cover the set, and in the lii-0 (i.e., t—x) ought to give equal weight to all the terms in Efj) so that
the numbemMN(6) will simply measure the set and appear to each of them can compete on an equal footing. This can be
scale afN(8)~ 6 P1(AM_The exponenD;(B,m) is known  done if we setm=p=[I'(8+1)]¥T(28+2) so that the
as the Hausdorff-BesicovitcfL5] dimension or the fractal relative strength between fragmentation and the mass loss
dimension of the arising pattern. process stays the same as the valug aficreases. This is a

To get a physical picture of the role played oy we set  very crucial point to be emphasized. We can obtain the frac-
B=0 for the time being, for which the polynomial equation ta| dimension for different values g8, which is simply the
becolmes quadraltlc in and the real positive root iIB{(mM)  rea| positive root of the polynomial equation inof degree
=—3z(1+1/m)+3(1+1/m)°+4/m when the second root g A detailed survey reveals that the fractal dimension in-
is D=—[D¢(m)+1+1/m]. Therefore, the exponent is  creases monotonically with increasigg To find the fractal
also function ofm. The expression foD¢(m) reveals that as §imension in the limit3— o0, we can use Stirling’s approxi-
the value ofm in.crease.s,.the fractal dimension decrease§hation in the polynomial equation to obtain[i1]=(1
very sharply and in the limin—e2, D¢(m)—0. This means —n)In[2] whenn=0.456 999 7 solves this equation. In order
that asm increases, the size of the corresponding arising set . . ; . -
decreases sharply due to the fast disappearance of its mem- give a physpal picture of the' role ¢ in .the limit

—oo, we consider the following model:F(x,y)=(x

ber, whereas am—0, D¢{(m)—1, that is, we recover the ) hi del sh h lv all d
full set (pure fragmentationthat describes a line. On the y)7o(x—y). This model shows that cuts are only allowe

other hand, had we kept fixed and lepp decrease, the effect © be in the middle in order to produce twolfragments of
would have been the same as was observed for increasing €dual size at each time event. This makgs) =;x”, so we
with p=1 (i.e., 5=0). Thus, it is the ratio betweemandp ~ need to choosen(x)=3x”"* (m=3 gives the same weight
that matters rather than their individual increases or deas for the fragmentation procgs3hen the rate equation for
creases. To give a further physical picture of what these reMn(t) becomes M (t)=—[(n+1)/2—=2 "M, (t). As
sults mean, we define the mass length relation for the objediefore, we set the numerical factor on the right-hand side of
asM o~ s°1(™ andM .~ 6 for the space where the object is this equation equal to zero and then take the natural loga-
being embedded, whetkdescribes the Euclidean space. Therithm on both sides to obtain thevalue for whichM ,(t) is
density of the property of the objegt then scales ap  time-independent. In doing so, we arrive at the same func-
~&P1M=d It is thus clear that for a given class of set cre-tional equation fon as we found fo3— . This shows that
ated by a specific rule, wheD(m) decreases it means that the kernelF(x,y) = (xy)?(x+y)?~* behaves exactly in the

it is increasingly moving away frond and hence more and same fashion as fdf(x,y) = (x+Yy)*8(x—y). We thus find
more members are removed from the full set. This in tWrMiyat in the limit3— oo, the resulting distribution of points is
creates increasingly ramified or stringy objects, since, geqt with fractal dimensio=0.456 999 7, which is a

D.f(m) =d describe_s the compact .ObjeCt \_Nith uniform_den'strictly self-similar fractal as randomness ceases by dividing
sity. Therefore, this shows that increasing thp ratio ,ﬂ\?

eans that the mass loss process becomes stronaer than e fragments into equal pieces. We are now in a position to
) pr 9 ive a physical picture of the role played I8y First of all,
fragmentation process and vice versa.

We now attempt to find the spatial scaling solution forthe process with3 =0 that describes the frequency curve of

d(£). Note that the dimension of the arising pattern is inde-pla.Cing .CUtS. about the size of the fragmenting particles Is
pendent ofo and consequently independent of how fast OrP0|s§on|an in nature. Consequently, the system Enjoys the
slow the system performs the process. Therefore, we can s&}aximum randomness and the corresponding fractal dimen-
o=1 without the risk of missing any physics, but it certainly Sion is Dy=0.414213. Forg>0, the frequency curve of
simplifies our calculation. Substituting the spatial scaling anP!acing cuts about the size of the fragmenting particles is
satz into the rate equatiofl) for F(x,y)=1 and m(x)  Gaussian in nature, meaning that as the valug fcreases,
=m> and differentiating it with respect t transforms the ~ the particles are increasingly more likely to break in the
partial integrodifferential equation into an ordinary differen- middle than on either end. That is, Asincreases, the vari-

tial equation, ance decreases in such a manner that in the Jimit, the
variance of the frequency curve becomes infinitely narrow,
E1-mED"(E)+{(1—6)—g2m(2— ) — 1]} D' (&) meaning ad-function distribution for which the fragments
are broken into two equal pieces. Therefore, there is a spec-

—[m(2—-6)(1-6)—(3—6)]P(£)=0. (3)  trum of fractal dimensions betweeB—0 when D;
=0.414213 and3— when D{=0.4569997. A detailed

For m=1, this is hypergeometric differential equatiphiZ]  numerical survey, which we do not present here, confirms

whose only physically acceptable linearly independent soluthat the fractal dimension increases monotonically wsth

tions are ,F,(1,—(1+2D);—D;;¢) and é€27P) ,F (2 and reaches a constant value wh@n-%. The previous

+D;,—D¢;2+D¢;€), where D;=0.414213. From these density-dimension relation implies that increasi@gvis-a

exact solutions for the spatial scaling function, we can obtairvis increasing order also means that the system loses less and

the asymptotic temporal scaling functiogh(&)~e ™ Pr¢, less mass, and this happens despite the fact that nom/the

which satisfies the conditioth(£§) —0 asé—oe. ratio stays the same. This shows that there exists an interplay
We now attempt to see the role gf on the system. To between fragmentation and the mass loss process that can be

judge its role, it is clear from the previous discussion that wetuned either by changing the ratio of andp, which is ob-
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vious of course, or by changing the degree of order alonefact an articulate term whereby the equation fails to describe
which is indeed a nontrivial result. a physically meaningful fragmentation process. We have
In summary, we have identified a new set with a widealso shown that the interplay between fragmentation and
range of subsets produced by tuning the degree of randoniass loss arises not only from the ratio of their strengths
ness only. The process starts with an initiator of unit intervaldetermined by their respective numerical coefficients, but
[0.1], and the generator divides the interval into two piecesa|so from the degree of order. We gave an exact numerical
deleting some parts from either side of both pieces at eacfa|ye of the mass exponent, which has never been reported,
time step. The amount of parts to be deleted is determined byng e obtained the explicit scaling function for a special
the parameter that controls the intensity of randomness. Wg5se of interest. Finally, we argued on the basis of our find-
quantified the size of the resulting set obtained in this way byngs that fractal dimension, degree of order, and the extent of
fractal dimension and showed that the fractal dimension inthe ramifications of the arising pattern are interconnected.
creases with increasing order and reaches its maximum value
when the pattern described by the set is perfectly ordered, The author is grateful to R. M. Ziff for sending valuable
which is contrary to some recently found resyli8]. We  comments and acknowledges inspiring correspondence with
also discussed the scaling theory of the process, emphasizify L. Krapivsky. M.K.H. acknowledges the Alexander von
dimensional analysis, and we showed that the shattering is iHumboldt Foundation for financial support.
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