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Transition from random to ordered fractals in fragmentation of particles in an open system
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We consider the fragmentation process with mass loss and discuss self-similar properties of the arising
structure both in time and space, focusing on dimensional analysis. This exhibits a spectrum of mass exponents
u, whose exact numerical values are given for whichx2u or tuz has the dimension of particle size distribution
function c(x,t), wherez is the kinetic exponent. We obtained conditions for which the scaling and fragmen-
tation process altogether breaks down, and we give an explicit scaling solution for a special case. Finally, we
identify a new class of fractals ranging from random to nonrandom and show that the fractal dimension
increases with increasing order and a transition to a strictly self-similar pattern occurs when randomness
completely ceases.
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The kinetics of the irreversible and sequential breakup
particles occurs in a variety of physical processes and
important applications in science and technology. These
clude erosion@1#, grinding and crushing of solids@2#, poly-
mer degradation and fiber length reduction@3#, breakup of
liquid droplets@4#, etc., to name just a few. In recent yea
there has been increasing interest in studying fragmenta
resulting in variations that increase the flexibility of th
theory in matching such conditions of real phenomena as
extension to higher dimensions@5#, agglomerate erosion@1#,
mass loss@6#, volume change@7#, and fragmentation annihi
lation @8#. The kinetic equation approach of fragmentation
described by a linear integrodifferential equation where m
or size is the only dynamical quantity. This theoretical a
proach is mean field in character since fluctuations are
nored altogether.

In this paper, we study the kinetics of fragmentation w
continuous mass loss, an interesting variant of the class
fragmentation equation introduced by Edwardset al. @6#.
This is relevant in all fragmentation processes mentio
earlier where mass loss might occur due to evaporation,
dation, sublimation, dissolution, melting, etc., or in the Yu
Furry process of cosmic shower theory where energy
occurs due to collision@9#. Although there exist a series o
paper devoted to this problem, the explicit scaling solut
with exact numerical exponents, the geometric propertie
the arising pattern, and the interplay between fragmenta
and mass loss remain unexplored. In addition to obtain
these, we give an alternative interpretation of the exist
scaling theory by considering dimensional analysis, and
give an explicit bound to the exponent of the breakup rate
which the kinetic equation fails. A strong motivation for th
present investigation came from the desire to know how fr
tal geometry of the resulting object changes with the deg
of order, which is quantified by the global exponent and
typically known as the fractal dimension.

The evolution of the particle size distribution functio
c(x,t) for fragmentation with mass loss in one dimension
1063-651X/2001/64~1!/016119~4!/$20.00 64 0161
f
as
n-

,
n,

n

ss
-
-

al

d
i-

-
s

n
of
n
g
g
e
r

-
e

s

]c~x,t !

]t
52c~x,t !E

0

x
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dy c~y,t !F~x,y2x!1
]

]x
„m~x!c~x,t !…,

~1!

whereF(x,y) is the breakup kernel describing the rules a
the rate at which a particle of size (x1y) breaks into sizesx
and y. Equation ~1! describes a process whereby cuts a
equivalent to seeds being sown on the fragmenting obje
thus producing two new segments. This immediately crea
two more new ends belonging to the two different, new
created fragments; in doing so, fragments start losing th
masses immediately from either end until they encounter
other seed or become dustlike, thereby stopping the los
their masses. Equation~1! also describes the sequential dep
sition of point-size particles that grow once deposited s
cessfully and stop growing upon collision with another po
or growing particle. In other words, the present model d
scribes nucleation and growth whenc(x,t) describes the gap
size distribution of sizex at time t or how space is covered
by growing objects. This occurs in a number of natural ph
nomena, including phase separation, wetting, droplet grow
and growth of breath figures. Recently, a variant of t
present model was considered in@10# in which the deposition
of growing rods instead of growing seeds was addressed

We consider the breakup kernel to beF(x,y)5(xy)b(x
1y)s21, for which the breakup ratea(x)5*0

xF(y,x2y)dy
5pxl(b,s), wherep5@G(b11)#2/G(2b12), the homoge-
neity indexl(b,s)52b1s, and Re(b).21. To comply
with the present choice of breakup ratea(x), it is essential to
consider a similar power-law form form(x), hence we
choosem(x);mxg, with m a positive real constant. How
ever, a(x) being the quantity describing the rate at whi
particles are fragmenting,x2l(b,s)[t(x) must bear the di-
mension of time, and this puts a strong constraint on
exponentg. That is, the dimensional consistency requir
©2001 The American Physical Society19-1
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g5l~b,s!11. This dimensional consistency has been
nored in all previous studies@6#; instead,g,l(b,s)11 was
identified as the recession regime andg.l(b,s)11 as the
fragmentation regime. A closer look at the rate equation
veals thatx andt are inextricably intertwined via the dimen
sional consistency, and hence the system becomes stoch
in nature. So, it is obvious that either of the two can be ta
to be an independent parameter when the other one is
pressible in terms of this. For example, ifx is chosen to be
the independent parameter, then using the fact that the
mension of a physical quantity is always expressed a
power monomial, we can define the dimensionless quan
j5t/xa. It is obvious that the dimension of the govern
quantity c(x,t) can also be expressed in terms ofx alone,
and hence we can define another dimensionless quantiP
5c(x,t)/x2u;xuc(x,xaj)[F(x,j). Sincej andP are di-
mensionless quantities upon transition from one system
units of measurement to another inside a given class, t
numerical values must remain unchanged, meaning]F/]x
50. This implies thatP is independent ofx and can be
completely expressed in terms ofj alone. Thus we can de
fine P5F(j) to enable us to write the spatial scaling ans
c(x,t);x2uF(j). Had we chosen timet to be the indepen-
dent quantity, a similar argument would lead us to write
temporal scaling ansatzc(x,t);tuzf(h) with h5x/t2z.
We know thatx2l(b,s) has the dimension of time, therefor
t21/l(b,s)[d(t) must have the dimension ofx. This gives us
z51/l(b,s), which is known as the kinetic exponent sin
d(t) describes the mean or typical cluster size anda5
2l(b,s). Inserting the temporal scaling ansatz into Eq.~1!
and requiring scaling to exist would give the same result
the kinetic exponentz. However, dimensional consideratio
proved to be very instructive and time-saving, yet rich
physics.

Note that the exponentu takes a value for whichx2u and
tuz have a dimension ofc(x,t), hence it is called the mas
exponent. The existence of scaling or a self-similar solut
actually means that we can choose self-similar coordin
c/tuz ~or c/x2u) andx/d(t) @or t/t(x)# such that their plots
for any initial condition collapse into one single curve. It
very instructive to note that atl(b,s)50, the governing
parametersx,t and the governed parameterc all lose their
dimensional characters. As a result, the system loses its
chastic nature. This means that one can no longer de
self-similar coordinates atl(b,s)50, which is conceptually
very important and crucial for scaling to exist, hence scal
at l(b,s)<0 breaks down. Note the inherent properties
the fragmentation process, which are the typical or m
cluster sized(t), must decrease as time proceeds, and
number density must be an increasing function of time.
order to be so, the system must be governed by some
servation laws. However, this is not true as the homogen
indexl(b,s),0, in which cased(t) becomes an increasin
function of time. This simply goes against the principle
kinetics of fragmentation. Combining all this, we argue th
the system fails to show scaling not only atl(b,s),0, as
was reported by Cheng and Redner@11#, but also at
l(b,s)50. Many authors noticed further anomalous beh
01611
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ior in this regime, e.g., lack of conservation of mass@12# and
an absence of self-averaging@13#. Due to this anomalous
behavior, this regime was termed a transition to shatter
@14#. These heuristic arguments actually imply a possi
failure to describe a physically meaningful fragmentati
process by the breakup kernel, for which the homogen
index l(b,s)<0 and the shattering is actually an articula
term for this regime. The above discussion is true for Eq.~1!
even when the mass loss term is absent. Therefore, we
restrict the rest of the discussion to the regimel(b,s).0
with Re(b).21.

We now turn to finding the mass exponentu, which can
only be found if the system follows some conservation law
For example, for pure fragmentation (m50), the mass or
size of the system is a conserved quantity and givesu52.
Defining thenth momentMn(t)5*0

`xnc(x,t)dx and com-
bining it with the rate equation~1! for the present choice o
F(x,y) andm(x) yields

dMn~ t !

dt
52S @G~b11!#2

G~2b12!
2

2G~b11!G~n1b11!

G~n12b12!
1mnD

3Mn12b1s~ t !. ~2!

Note that the number densityM0(t) evolves in the same
fashion as it would in the absence of the mass loss term. T
means that particles keep losing their mass in a continu
manner by some mechanisms that do not alter the num
density. The interesting feature of the above equation is
for m.0, there are infinitely manyn5D f(b,m) values for
which MD f (b,m)(t) are conserved quantities. However, f

m50, there is only one conserved quantityM1(t), i.e., size
or mass of the system, and this does not depend onb. The
dynamics of the system is governed by conservation la
and, as a consequence, the system shows scale invari
These conserved quantities in fact are the intrinsic agen
sponsible for tuning the numerical value of the mass ex
nentu, and they introduce universality to the process. Ho
ever, at l<0 there is no evidence that there exists a
conservation law for which the mean cluster size can b
decreasing function of time while the mean number den
can behave in the opposite way. We can find the numer
value ofD f(b,m) by searching for the positive and real ro
of the equation obtained by setting the term in the bracke
Eq. ~2! equal to zero, which is a polynomial inn of a degree
determined by theb value. Substituting the temporal scalin
ansatz into the definition of Mn(t) gives Mn(t)
;t2[n2(u21)]z*0

`hnf(h)dh, and demanding tha
MD f

(b,m) be a conserved quantity immediately givesu

5@11D f(b,m)#, which clearly depends onb andm only if
m.0. Owing to the random nature of the process and du
the presence of the mass loss term, it is clear that when
process continuesad infinitum, it creates a distribution of
points ~dust! along a line at an extreme late stage that
different from any known set@15,16#. To measure the size o
the set created in the long-time limit, we define a line se
ment d(t)5M1(t)/M0(t).t21/l(b,s), which is the typical
cluster size. We can count the number of such segm
9-2
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TRANSITION FROM RANDOM TO ORDERED FRACTALS . . . PHYSICAL REVIEW E 64 016119
needed to cover the set, and in the limitd→0 ~i.e., t→`)
the numberN(d) will simply measure the set and appear
scale asN(d);d2D f (b,m). The exponentD f(b,m) is known
as the Hausdorff-Besicovitch@15# dimension or the fracta
dimension of the arising pattern.

To get a physical picture of the role played bym, we set
b50 for the time being, for which the polynomial equatio
becomes quadratic inn and the real positive root isD f(m)
52 1

2 (111/m)1 1
2 A(111/m)214/m when the second roo

is D52@D f(m)1111/m#. Therefore, the exponentu is
also function ofm. The expression forD f(m) reveals that as
the value ofm increases, the fractal dimension decrea
very sharply and in the limitm→`, D f(m)→0. This means
that asm increases, the size of the corresponding arising
decreases sharply due to the fast disappearance of its m
ber, whereas asm→0, D f(m)→1, that is, we recover the
full set ~pure fragmentation! that describes a line. On th
other hand, had we keptm fixed and letp decrease, the effec
would have been the same as was observed for increasim
with p51 ~i.e., b50). Thus, it is the ratio betweenm andp
that matters rather than their individual increases or
creases. To give a further physical picture of what these
sults mean, we define the mass length relation for the ob
asM0;dD f (m) andMe;dd for the space where the object
being embedded, whered describes the Euclidean space. T
density of the property of the objectr then scales asr
;dD f (m)2d. It is thus clear that for a given class of set cr
ated by a specific rule, whenD f(m) decreases it means th
it is increasingly moving away fromd and hence more an
more members are removed from the full set. This in tu
creates increasingly ramified or stringy objects, sin
D f(m)5d describes the compact object with uniform de
sity. Therefore, this shows that increasing them/p ratio
means that the mass loss process becomes stronger tha
fragmentation process and vice versa.

We now attempt to find the spatial scaling solution f
F(j). Note that the dimension of the arising pattern is ind
pendent ofs and consequently independent of how fast
slow the system performs the process. Therefore, we can
s51 without the risk of missing any physics, but it certain
simplifies our calculation. Substituting the spatial scaling
satz into the rate equation~1! for F(x,y)51 and m(x)
5mx2 and differentiating it with respect toj transforms the
partial integrodifferential equation into an ordinary differe
tial equation,

j~12mj!F9~j!1$~12u!2j@2m~22u!21#%F8~j!

2@m~22u!~12u!2~32u!#F~j!50. ~3!

For m51, this is hypergeometric differential equation@17#
whose only physically acceptable linearly independent so
tions are 2F1„1,2(112D f);2D f ;j… and j (11D f )

2F1(2
1D f ,2D f ;21D f ;j), where D f50.414 213. From these
exact solutions for the spatial scaling function, we can obt
the asymptotic temporal scaling functionf(j);e2D fj,
which satisfies the conditionf(j)→0 asj→`.

We now attempt to see the role ofb on the system. To
judge its role, it is clear from the previous discussion that
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ought to give equal weight to all the terms in Eq.~1! so that
each of them can compete on an equal footing. This can
done if we setm5p5@G(b11)#2/G(2b12) so that the
relative strength between fragmentation and the mass
process stays the same as the value ofb increases. This is a
very crucial point to be emphasized. We can obtain the fr
tal dimension for different values ofb, which is simply the
real positive root of the polynomial equation inn of degree
b. A detailed survey reveals that the fractal dimension
creases monotonically with increasingb. To find the fractal
dimension in the limitb→`, we can use Stirling’s approxi
mation in the polynomial equation to obtain ln@n11#5(1
2n)ln@2# whenn50.456 999 7 solves this equation. In ord
to give a physical picture of the role ofb in the limit b
→`, we consider the following model:F(x,y)5(x
1y)gd(x2y). This model shows that cuts are only allowe
to be in the middle in order to produce two fragments
equal size at each time event. This makesa(x)5 1

2 xg, so we
need to choosem(x)5 1

2 xg11 (m5 1
2 gives the same weigh

as for the fragmentation process!. Then the rate equation fo
Mn(t) becomes Mn8(t)52@(n11)/2222n#Mn1g(t). As
before, we set the numerical factor on the right-hand side
this equation equal to zero and then take the natural lo
rithm on both sides to obtain then value for whichMn(t) is
time-independent. In doing so, we arrive at the same fu
tional equation forn as we found forb→`. This shows that
the kernelF(x,y)5(xy)b(x1y)s21 behaves exactly in the
same fashion as forF(x,y)5(x1y)gd(x2y). We thus find
that in the limitb→`, the resulting distribution of points is
a set with fractal dimensionD f50.456 999 7, which is a
strictly self-similar fractal as randomness ceases by divid
the fragments into equal pieces. We are now in a position
give a physical picture of the role played byb. First of all,
the process withb50 that describes the frequency curve
placing cuts about the size of the fragmenting particles
Poissonian in nature. Consequently, the system enjoys
maximum randomness and the corresponding fractal dim
sion is D f50.414 213. Forb.0, the frequency curve o
placing cuts about the size of the fragmenting particles
Gaussian in nature, meaning that as the value ofb increases,
the particles are increasingly more likely to break in t
middle than on either end. That is, asb increases, the vari-
ance decreases in such a manner that in the limitb→`, the
variance of the frequency curve becomes infinitely narro
meaning ad-function distribution for which the fragment
are broken into two equal pieces. Therefore, there is a s
trum of fractal dimensions betweenb→0 when D f
50.414 213 andb→` when D f50.456 999 7. A detailed
numerical survey, which we do not present here, confir
that the fractal dimension increases monotonically withb
and reaches a constant value whenb→`. The previous
density-dimension relation implies that increasingb vis-à-
vis increasing order also means that the system loses less
less mass, and this happens despite the fact that now them/p
ratio stays the same. This shows that there exists an inter
between fragmentation and the mass loss process that ca
tuned either by changing the ratio ofm andp, which is ob-
9-3
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vious of course, or by changing the degree of order alo
which is indeed a nontrivial result.

In summary, we have identified a new set with a wi
range of subsets produced by tuning the degree of rand
ness only. The process starts with an initiator of unit inter
@0.1#, and the generator divides the interval into two piec
deleting some parts from either side of both pieces at e
time step. The amount of parts to be deleted is determine
the parameter that controls the intensity of randomness.
quantified the size of the resulting set obtained in this way
fractal dimension and showed that the fractal dimension
creases with increasing order and reaches its maximum v
when the pattern described by the set is perfectly orde
which is contrary to some recently found results@18#. We
also discussed the scaling theory of the process, emphas
dimensional analysis, and we showed that the shattering
d

J.

J.
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fact an articulate term whereby the equation fails to desc
a physically meaningful fragmentation process. We ha
also shown that the interplay between fragmentation
mass loss arises not only from the ratio of their streng
determined by their respective numerical coefficients,
also from the degree of order. We gave an exact numer
value of the mass exponent, which has never been repo
and we obtained the explicit scaling function for a spec
case of interest. Finally, we argued on the basis of our fi
ings that fractal dimension, degree of order, and the exten
the ramifications of the arising pattern are interconnected
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